Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Trace Elem Med Biol ; 84: 127442, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38554676

RESUMO

The contents of essential (Ca, Fe, K, Na, P, and Zn) and potentially toxic inorganic elements (As, Al, Cd, Cr, Cu, Mn, and Pb) in enteral and parenteral nutrition formulas were evaluated by inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GFAAS). A total of 30 enteral formulas, 23 parenteral solution components, and 3 parenteral solutions were analyzed. The elements Ca and K presented the higher contents (72-2918 mg L-1 and 235-2760 mg L-1) while the lowest concentration levels were found for As and Cd (<0.68 µg L-1 and <0.01-0.62 µg L-1) in the studied samples. The validated analytical methods presented an accuracy of 75-116% and RSD values lower than 9.8%. Calcium gluconate and magnesium sulfate, which are used as raw materials in parenteral solution, are potential sources of Al and Mn contamination. A Hazard Quotient (HQ) >1 was obtained for Al (27 ± 1 µg L-1) in one of the parenteral samples, whereas the established limit is 25 µg L-1. Enteral samples were considered safe for consumption regarding the Al, As, and Cd levels. One healing-specific and pediatric formula contained Pb at levels above 0.25 µg kg-day-1, too high for safe consumption. The enteral formulas (pediatric, diabetes-specific, renal-specific, healing-specific, and standard formula with addition of fiber) presented risks in relation to the consumption of Cr and Mn (>250 µg day-1 and >11 mg day-1). The results indicate the need for strict monitoring, considering that these formulations are often the single patient's food source.

2.
Heliyon ; 10(3): e25139, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356546

RESUMO

Enormous amount of protective masks was consumed in connection with the COVID-19 pandemic and they still burden the environment. Therefore, it is necessary to look for possibilities of their disposal in an ecologically acceptable way. This article focuses on particulate matter produced concerning the energy disposal of pandemic FFP2 masks. These masks were processed into small pieces, added to spruce and beech wood (in the weight proportion 5 % and 10 % of FFP2 masks) and formed into pellets. The concentration of particulate matter formed during their combustion was measured by the gravimetric method. The inorganic elements were detected from filters with captured particulate matter by an energy-dispersive X-ray fluorescence spectrometer and verified by inductively coupled plasma-optical emission spectroscopy. It was found that higher concentrations of particulate matter were recorded predominantly with a higher mass airflow. In both airflows (40 % and 50 %), beech pellets had a higher mass concentration than spruce pellets probably caused by the presence of bark in beech wood. Based on the chemical composition, the following elements in small amounts (0-2 mg on a filter) were identified: K, S, Cl and Fe. High concentrations of harmful elements carried in particulate matter have not been detected. FFP2 masks added in a small percentage (up to 10 %) can be used in wood pellets for combustion purposes without significantly affecting the combustion process.

3.
Sci Total Environ ; 914: 170026, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218486

RESUMO

Estuarine coastal water and sediments collected from multiple locations within the middle Río de la Plata (RDLP) estuary were analyzed in order to identify the presence of microplastics (MPs, <5 mm) and mesoplastics (MePs, 5-25 mm) in one of the most significant estuaries in the Southwestern Atlantic. The present study represents one of the first researches to survey MPs and MePs contamination in key stations at RDLP estuary. Average concentrations of 14.17 ± 5.50 MPs/L and 10.00 MePs/L were detected in water samples, while 547.83 ± 620.06 MPs/kg (dry weight) and 74.23 ± 47.29 MePs/kg d.w. were recorded in sediments. The greatest abundances were observed in the more anthropized areas, near urban settlements. Fibers were the most conspicuous plastic items in water and sediments, followed by fragments. On the other hand, surface sediments, and 50 cm and 100 cm-depth sediments also presented MPs and MePs indicating they could serve as a stratigraphic indicator for recently formed sediments. The main polymer type identified were acrylic fibers, followed by polypropylene (PP) and polyethylene terephthalate (PET). Besides, SEM-EDX detected the presence of Si, Fe, Ti, Al and Cl onto the plastics' surface. These elements may serve as additives to enhance the plastics' properties, such as in the case of Ti, or they could originate from the environment, like biogenic Si or Fe, and Al possibly as a component of the suspended particles or sediments adhered to the micro or meso plastics. Finally, the results of the present study showed that MPs and MePs are commonly found in waters and also tend to be trapped in sediments of the RDLP estuary supporting the assertion that these areas play a substantial role in influencing the transport, dispersion, and buildup of MPs in estuarine regions.

4.
Front Plant Sci ; 14: 1255637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046598

RESUMO

Flos Sophorae (FS), or the dried flower buds of Sophora japonica L., is widely used as a food and medicinal material in China. The quality of S. japonica flowers varies with the developmental stages (S1-S5) of the plant. However, the relationship between FS quality and maturity remains unclear. Inductively coupled plasma optical emission spectrometry (ICP-OES) and ultra-high performance liquid chromatography coupled with electrospray ionization-triple quadrupole-linear ion trap mass spectrometry (UPLC-ESI-Q TRAP-MS/MS) were used to analyze inorganic elements and flavonoid metabolites, respectively. A combined analysis of the inorganic elements and flavonoid metabolites in FS was conducted to determine the patterns of FS quality formation. Sixteen inorganic elements and 173 flavonoid metabolites that accumulated at different developmental stages were identified. Notably, 54 flavonoid metabolites associated with the amelioration of major human diseases were identified, and Ca, P, K, Fe, and Cu were postulated to influence flavonoid metabolism and synthesis. This study offers a novel perspective and foundation for the further exploration of the rules governing the quality of plant materials.

5.
Foods ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685140

RESUMO

Growing health, environmental, and ethical concerns have encouraged interest in plant-based milks (PBMs), but it remains questionable whether the nutrition labeling of these products is adequately reliable for consumers, and whether nutritional standards can be defined for a given PBM type. On this basis, cereal, pseudocereal, nut, and legume PBMs available on the Italian market were analyzed in order to check the accuracy of nutritional labels on packages and generate new or updated compositional data. Most labels provided inaccurate information, especially with respect to the declared energy, fat, and saturated fat. Cereal- and pseudocereal-based PBMs were generally characterized by high MUFA (34.04-59.35%) and PUFA (21.61-52.27%). Almond, soy, rice, and hazelnut beverages displayed the highest levels of total tocopherols (11.29-13.68 mg/L), while buckwheat and spelt PBMs had the highest total polyphenol content (34.25-52.27 mg GAE/100 mL). Major and trace elements greatly varied among samples, being more abundant in buckwheat and coconut-based drinks. A PCA confirmed that nutritional standards cannot be unequivocally established for a given PBM, and indicated that, among the investigated variables, inorganic elements had more weight in the sample differentiation. Overall, to reliably guide consumers in their dietary choices, there is a need for greater accuracy in the development of nutrition labels for PBMs, as well as greater effort in assessing the nutritional quality of the ever-increasing variety of products available on the market.

6.
Chemosphere ; 340: 139836, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595691

RESUMO

Zero-valent copper engineered nanoparticles (Cu-ENPs) released through unintentional or intentional actions into the agricultural soils can alter the availability of inorganic phosphorus (IP) to plants. In this study, we used adsorption-desorption experiments to evaluate the effect of particle size of 1% Cu-ENPs (25 nm and 40-60 nm) on IP availability in Santa Barbara (SB) volcanic ash soil. X-Ray Diffraction results showed that Cu-ENPs were formed by a mixture of Cu metallic and Cu oxides (Cu2O or/and CuO) species, while specific surface area values showed that Cu-ENPs/25 nm could form larger aggregate particles compared to Cu-ENPs/40-60 nm. The kinetic IP adsorption of SB soil without and with 1% Cu-ENPs (25 nm and 40-60 nm) followed the mechanism described by the pseudo-second-order (k2 = 0.45-1.13 x 10-3 kg mmol-1 min-1; r2 ≥ 0.999, and RSS ≤ 0.091) and Elovich (α = 14621.10-3136.20 mmol kg-1 min-1; r2 ≥ 0.984, and RSS ≤ 69) models. Thus, the rate-limiting step for IP adsorption in the studied systems was chemisorption on a heterogeneous surface. Adsorption equilibrium isotherms without Cu-ENPs were fitted well to the Freundlich model, while with 1% Cu-ENPs (25 nm and 40-60 nm), isotherms were described best by the Freundlich and/or Langmuir model. The IP relative adsorption capacity (KF) was higher with 1% Cu-ENPs/40-60 nm (KF = 110.41) than for 1% Cu-ENPs/25 nm (KF = 74.40) and for SB soil (KF = 48.17). This study showed that plausible IP retention mechanisms in the presence of 1% Cu-ENPs in SB soil were: i) ligand exchange, ii) electrostatic attraction, and iii) co-precipitate formation. The desorption study demonstrated that 1% Cu-ENPs/40-60 nm increased the affinity of IP in SB soil with a greater effect than 1% Cu-ENPs/25 nm. Thus, both the studied size ranges of Cu-ENPs could favor an accumulation of IP in volcanic ash soils.


Assuntos
Lepidópteros , Solo , Animais , Tamanho da Partícula , Cobre , Adsorção , Erupções Vulcânicas , Fósforo
7.
Chemosphere ; 339: 139594, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37480946

RESUMO

Inorganic elements such as heavy metals and other potentially toxic elements are frequently detected in humans. The aim of the present study was to analyze the blood concentrations of 49 inorganic elements in a cohort of 401 subjects from Cape Verde. The study was performed in the frame of the Pesticide Residues in Vegetables of the Macaronesia project (PERVEMAC-II). Concentration of inorganic elements, including elements in the ATSDR's priority pollutant list and rare earth elements (RREs) were measured by ICP-MS in the whole blood of participants. A total of 20 out of 49 elements (40.8%) were detected in ≥20% of participants. Arsenic, copper, mercury, lead, selenium, strontium and zinc were detected in ≥99% of samples. Among the REEs, 7 showed detection frequencies above 20%. The median number of different elements detected was 15. In the present series, 77.0, 99.2 and 33.4% of the participants showed values of arsenic, mercury and lead higher than Reference Values 95%. These percentages were much higher than those reported in similar studies. Niobium and tantalum showed the highest median concentrations: 1.35 and 1.34 ng/mL, suggesting an environmental source of these valuable REEs in Cape Verde. Age appeared as the most important factor influencing the blood levels of inorganic elements. Lifestyle had an effect on the concentration of some of these elements. Those subjects whose water source was pond water had significantly higher arsenic levels. The concentration of ∑REEs was significantly higher among individuals who purchase their food in supermarkets (P = 0.013). These variables are of relevance since they can be controlled individually to reduce exposure to these contaminants. Our results may be useful for the implementation of public health measures by the competent authorities.


Assuntos
Arsênio , Mercúrio , Humanos , Monitoramento Biológico , Arsênio/análise , Cabo Verde , Verduras
8.
Environ Pollut ; 332: 121988, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301458

RESUMO

To study air pollution from aircraft activity at airport and its risks to human health, we conducted an experiment near Tianjin Binhai International Airport from November 11 to November 24, 2017. The characteristics, source apportionment, and health risk of inorganic elements in particles were determined in the airport environment. The mean mass concentrations of inorganic elements in PM10 and PM2.5 were 17.1 and 5.0 µg/m3, accounting for 19.0% of PM10 mass and 12.3% of PM2.5 mass, respectively. Inorganic elements, including arsenic, chromium, lead, zinc, sulphur, cadmium, potassium, sodium, and cobalt, were mainly concentrated in fine particulate matter. The particle number concentration within the 60-170 nm particle size range was significantly higher under polluted than non-polluted conditions. A principal component analysis revealed important contributions of Cr, Fe, K, Mn, Na, Pb, S, and Zn originating from airport activities, including aircraft exhaust, braking, tire wear, ground service equipment, and airport vehicles. Based on analyses of the non-carcinogenic and carcinogenic risks of heavy metal elements in PM10 and PM2.5, there were notable human health impacts, emphasising the importance of relevant research.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aeroportos , Material Particulado/análise , Emissões de Veículos/análise
9.
Huan Jing Ke Xue ; 44(4): 1899-1910, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040941

RESUMO

To explore the characteristics and sources of PM2.5 in the core area of Ili River Valley in spring, a total of 140 PM2.5 samples were collected at six sampling sites during April 20-29, 2021, and 51 chemical components including inorganic elements, water-soluble ions, and carbon components were analyzed. The results showed that ρ(PM2.5) was at a low level during sampling, ranging from 9 µg·m-3 to 35 µg·m-3. Si, Ca, Al, Na, Mg, Fe, and K were the most abundant elements, accounting for 12% of PM2.5, indicating that PM2.5 was affected by the dust sources in spring. The spatial distribution characteristics of elements depended on the surrounding environments of the sampling sites. The new government area was affected by coal-fired sources, so the value of As concentration was high. Yining Municipal Bureau and the Second Water Plant were greatly affected by motor vehicle sources, so the values of Sb and Sn concentration were higher. The enrichment factor results showed that Zn, Ni, Cr, Pb, Cu, and As were mainly emitted from fossil fuel combustion and motor vehicles. The concentration of water-soluble ions accounted for 33.2% of PM2.5. Among them, ρ(SO42-), ρ(NO3-), ρ(Ca2+), and ρ(NH4+) were (2.48±0.57), (1.22±0.75), (1.18±0.49), and (0.98±0.45) µg·m-3, respectively. The higher Ca2+ concentration also reflected the contribution of dust sources. The ratio of n(NO3-)/n(SO42-) was between 0.63 and 0.85, which indicated that the influence of stationary sources was more important than that of mobile sources. Both Yining Municipal Bureau and the Second Water Plant were affected by motor vehicle exhaust; therefore, their n(NO3-)/n(SO42-) ratios were high. Yining County was in a residential area, and therefore its n(NO3-)/n(SO42-) ratio was lower. The average ρ(OC) and ρ(EC) in PM2.5 were 5.12 µg·m-3(4.67-6.25 µg·m-3) and 0.75 µg·m-3(0.51-0.97 µg·m-3), respectively. Yining Municipal Bureau was significantly affected by motor vehicle exhaust from both sides, so the values of OC and EC concentration were slightly higher than those in other sampling sites. The SOC concentration was calculated by the minimum ratio method, and the results showed that the values of SOC concentration in the New Government Area, the Second Water Plant, and Yining Ecological Environment Bureau were higher than those in other sampling sites. The results of the CMB model showed that PM2.5 in this area mainly came from the contribution of secondary particulate matter and dust sources, which accounted for 33.3% and 17.5%, respectively. Secondary organic carbon (16.2%) was the main contribution source of secondary particulate matter.

10.
Mar Pollut Bull ; 187: 114582, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634539

RESUMO

The biomagnification and biodilution of inorganic pollutants, have a close correlation on the structure and function of trophic change behavior; sea turtles represent an excellent bioindicator model to identify their impact in marine ecosystems. To understand pollution effects on marine ecosystems, we quantified the bioconcentration of 50 inorganic elements in the blood and scute tissues of three nesting species of sea turtles (Chelonia mydas, Eretmochelys imbricata and Caretta caretta), collected in Quintana Roo State from July 2017 to August 2018. As a general trend, essential mineral elements with toxic potential showed the highest concentrations in both tissues; significant increase concentration of arsenic, mercury, and cerium levels was observed with increasing trophic levels indicating its biomagnification while a significant decrease in manganese and bismuth showed a biodilution effect. We expect that our findings can be used as baseline data in future biomonitoring and contamination risk assessment programs in the region.


Assuntos
Arsênio , Mercúrio , Tartarugas , Animais , Bioacumulação , Ecossistema
11.
Biol Trace Elem Res ; 201(1): 455-463, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35091882

RESUMO

In an attempt to know the elemental composition of two endemic Algerian thyme species, we analyzed eleven mineral and trace elements (Br, Ca, Cr, Cu, Fe, K, Mn, Rb, Sr, V, and Zn) in Thymus algeriensis Boiss & Reut. and Thymus capitatus (L.) Hoffm. & Link. These species are commonly used in Algeria as aromatic and medicinal shrubs. The total concentrations of chemical elements were determined by EDXRF spectrometry. The instrument calibration was assessed through the analysis of certified reference material CRM-336 (Lichen) from the IAEA, Vienna, Austria. The results show that the highest concentrations of the micronutrients (Br, Cr, Cu, Mn, Sr, V, and Zn) were registered in T. algeriensis, while the maximum concentrations of Ca, Fe, and the non-essential element, Rb, were found in T. capitatus. Potassium contents were similar in the two species. The concentrations of essential chemical elements in T. algeriensis leaves were found in the following order: K > Ca > Mn > Fe > Zn > Cu > Cr. However, the order of these elements in T. capitatus was Ca > K > Fe > Zn > Mn > Cu > Cr. Principal component analysis (PCA) showed that T. algeriensis was highly associated with Br, Cr, Cu, Mn, Sr, V, and Zn, while T. capitatus was correlated with Ca, Fe, K, and Rb. Dietary element intakes through ingestion of 1 teaspoon of dry powder (~ 10 g) were estimated and compared to recommended daily intakes and permissible limits under FAO/WHO guidelines. In all cases, these estimates were below those levels. These findings can enhance the dissemination of these medicinal plants, which have medicinal and organoleptic properties, and provide an experiment-based guidance to the pharmaceutical and food industries.


Assuntos
Thymus (Planta) , Oligoelementos , Oligoelementos/análise , Micronutrientes/análise , Análise Espectral , Folhas de Planta/química
12.
Environ Toxicol Pharmacol ; 97: 104025, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36460284

RESUMO

Welding fumes are classified as carcinogenic to humans. The aim of the present study was to measure buccal micronucleus cytome assay biomarkers and to evaluate their association with inorganic elements and genetic polymorphisms (XRCC1, OGG1, XRCC3, GSTM1, and GSTT1) in welders (n = 98) and control individuals (n = 100). Higher levels of DNA damage and cell death were observed in the exposed group. Also, a significant correlation between the frequency of micronuclei and Na, Si, Cl, Ti, Cr, Zn and Mg concentrations. The formation of micronuclei, binucleated cells, cell death was associated with polymorphisms in repair pathways. The OGG1Ser326Cys and XRCC3 241Thr/Met genotypes were associated with cell death. Individuals with GSTM1 null genotype had a higher frequency of micronuclei. These results demonstrate that the deleterious effects of exposure to welding fumes are exacerbated by lifestyle habits, and genetic polymorphisms can influence DNA damage and cell death.


Assuntos
Ferreiros , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Testes para Micronúcleos , Polimorfismo Genético , Dano ao DNA , Biomarcadores , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
13.
Methods Mol Biol ; 2527: 203-221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951193

RESUMO

Somatic embryogenesis (SE) is a process that allows formation of embryos from somatic cells; this biological process has different stages that first require micropropagation and conditioning of explant, and then induction, multiplication, development, and germination of somatic embryos (SoE), to obtain seedlings that will be acclimatized and grown in a greenhouse to further be cultivated in the field. Inorganic compounds are supplemented by macro- and micronutrients that can conform different culture media, and with other compounds such as a carbon source, vitamins, and plant growth regulators (PGRs), will direct the fate of the plant cells to obtain SoE that will regenerate into plants. The concentration of these inorganic compounds must be optimized, since at very high concentrations they can cause toxicity and at low concentrations they may not induce the desired response. The objective of this chapter is to describe the most significant advances in the use of inorganic elements during the different stages of SE, starting with the description of the most used basal media and later describing the use of the main studied mineral elements during establishment of SE.


Assuntos
Reguladores de Crescimento de Plantas , Técnicas de Embriogênese Somática de Plantas , Meios de Cultura , Desenvolvimento Embrionário , Germinação
14.
Foods ; 11(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35885399

RESUMO

Traditional alcoholic beverages have always been part of the Mediterranean culture and, lately, they have been re-evaluated to valorize both the territory and local customs. In this study, the Amarena wine, a fortified wine included in the national list of the traditional agri-food products, was characterized during bottle aging for oenological parameters, chromaticity, volatiles, and inorganic elements. Then, experimental data were visually interpreted by a principal component analysis (PCA). PCA revealed that most of oenological parameters (i.e., alcoholic grade, total dry extract, sugars, organic acids, and phenolic compounds) had a scarce discriminating power. Additionally, ethyl esters were only present in younger products, while remaining at quite constant levels. Conversely, certain metals (i.e., Mg, Na, Mn, Zn, and Cu), chromatic properties, and pH differentiated older Amarena bottles from the younger counterpart. Particularly, acetaldehyde and furanic compounds proved to be valid aging markers. A sensorial analysis highlighted that fruity and floral odors and flavors characterized younger beverages, while dried fruity, nutty, and spicy notes were displayed by older products, along with the valuable attribute of "oxidized" typically observed in aged Sherry wines. Overall, this study may encourage the production and commercialization of the Amarena wine, thus preserving the cultural heritage of the Mediterranean area.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35649678

RESUMO

Pollution of aquatic ecosystems is associated with the discharge of mainly industrial and urban effluents, which may cause damage to public health. This study aims to evaluate the cytotoxic, genotoxic, and mutagenic potential of surface water samples under the influence of different anthropogenic effluents in a human-derived liver cell line (HepG2). Samples were collected in Esteio and Sapucaia streams (Rio Grande do Sul; Brazil), which flow into the Sinos River, a source of water supply for more than one million people. Physicochemical and microbiological analyses were performed as well as an analysis of inorganic elements using the PIXE technique (Particle-Induced X-Ray Emission). The presence of pharmaceutical compounds and caffeine was evaluated by gas chromatography coupled to mass spectrometry. The cytotoxicity, genotoxicity, and mutagenicity of the samples were evaluated in HepG2 cells by cell viability assays, alkaline Comet Assay and Cytokinesis-block micronucleus (CBMN) assay. We verified alterations in the physicochemical and microbiological parameters and detected caffeine, diethyltoluamide, and different inorganic elements that corresponded to elements from domestic and industrial effluents and agricultural runoff. Although the samples in the concentration used were not cytotoxic, water samples from all sites induced DNA damage. However, it is difficult to attribute these damages to a specific substance since the factors are a complex mixture of different compounds. Despite this, it is observed that both urban and industrial contributions had a similar effect in the cells evaluated. Such results demonstrate the need to perform biomonitoring of surface waters under anthropogenic influence, especially those that flow into rivers that are a source of public supply water. We also highlight the need for research into emerging pollutants in these aquatic environments.


Assuntos
Rios , Poluentes Químicos da Água , Efeitos Antropogênicos , Brasil , Cafeína , Dano ao DNA , Ecossistema , Monitoramento Ambiental/métodos , Humanos , Mutagênicos/análise , Mutagênicos/toxicidade , Rios/química , Água , Poluentes Químicos da Água/toxicidade
16.
J Food Sci Technol ; 59(5): 2004-2012, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35531415

RESUMO

To guarantee the adequate intake of nutrients a variety of food supplementation (including infant formulas) has been used to ensure the nutrition of infants. Considering that the total concentration of nutrients is not enough to determine whether the food provides all the nutritional needs, the objective of this study was to evaluate the total concentration and bioaccessibility of some elements in thirty commercial infant formulas consumed in Brazil. A standardized in vitro gastrointestinal digestion method was used to obtain the soluble fraction of each mineral, which was analyzed by ICP OES after microwave oxidative digestion to obtain the bioaccessibility values. The total concentration and the bioaccessibility of the elements varied considerably according to the sample type (traditional infant formulas, formulas for infants with gastrointestinal problems, formulas for premature and soy-based). The bioaccessibility values are 3-43% (Ca), 53-97% (Cu), 35-100% (Fe), 70-114% (K), 47-90% (Mg), 52-95% (P), 31-92% (Zn). In general, the total concentration values for the elements were higher than that declared by the manufacturers, also than the current legislation as well, regarding the DRI. Although these results, it is important to emphasize that the consumption of infant formulas can provide an adequate intake of minerals for the infants. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05215-0.

17.
Aquat Toxicol ; 248: 106207, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35635982

RESUMO

Chemical contaminants are one of the causes of the ongoing degradation of coastal and estuarine nurseries, key functional habitats in which the juveniles of many marine species grow. As chemical contaminants can cause a decrease in the energy available and induce defence mechanisms reducing the amount of energy allocated to life history traits, quantifying their effect on the fitness of juvenile fish is key to understand their population-level consequences. However, these effects are primarily estimated experimentally or in the wild but on a limited number of contaminants or congeners that do not reflect the wide variety of chemical contaminants to which juvenile fish are exposed. To address this issue, we measured concentrations of 14 trace metal elements (TMEs) and bioaccumulative organic contaminants (OCs) in European sea bass juveniles (1-year-old) from three major French nurseries (Seine, Loire and Gironde estuaries). We tested the hypotheses that (i) levels and profiles of contaminants differed among studied nurseries, and ii) fish growth and body condition (based on morphometric measurements and muscle C:N ratio) were lower in individuals with higher contaminant concentrations. Multivariate analyses showed that each nursery had distinct contaminant profiles for both TMEs and OCs, confirming the specific contamination of each estuary, and the large array of contaminants accumulated by sea bass juveniles. Increasing concentrations in some TMEs were associated to decreased growth, and TMEs were consistently related to lower fish body condition. The effect of OCs was more difficult to pinpoint possibly due to operational constraints (i.e., analyses on pooled fish) with contrasting results (i.e., higher growth and decreased body condition). Overall, this study shows that chemical contaminants are related to lower fish growth and body condition at an early life stage in the wild, an effect that can have major consequences if sustained in subsequent ages and associated with a decline in survival and/or reproductive success.


Assuntos
Bass , Doenças dos Peixes , Oligoelementos , Poluentes Químicos da Água , Animais , Bass/metabolismo , Ecossistema , Estuários , Oligoelementos/análise , Poluentes Químicos da Água/toxicidade
18.
Zhongguo Zhong Yao Za Zhi ; 47(2): 444-452, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178988

RESUMO

In order to evaluate the composition and distribution characteristics of inorganic elements in Laminaria japonica, this study employed inductively coupled plasma mass spectrometry(ICP-MS) to detect the inorganic elements and used high performance liquid chromatography tandem ICP-MS(HPLC-ICP-MS) to determine the content of different arsenic species in L. japonica from diffe-rent origins. Micro X-ray fluorescence(Micro-XRF) was used to determine micro-area distribution of inorganic elements in L. japonica. The results showed that the average content of Mn, Fe, Sr, and Al was high, and that of As and Cr exceeded the limits of the national food safety standard. According to the results of HPLC-ICP-MS, arsenobetaine(AsB) was the main species of As contained in L. japonica. The more toxic inorganic arsenic accounts for a small proportion, whereas its content was 1-4 times of the limit in the national food safety standard. The results of Micro-XRF showed that As, Pb, Fe, Cu, Mn, and Ni were mainly distributed on the surface of L. japonica. Among them, As and Pb had a clear tendency to diffuse from the surface to the inside. The results of the study can provide a basis for the processing as well as the medicinal and edible safety evaluation of L. japonica.


Assuntos
Arsênio , Laminaria , Oligoelementos , Arsênio/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Análise Espectral , Oligoelementos/análise
19.
Insects ; 13(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35206780

RESUMO

Prestomal teeth are cuticular projections on the mouthparts of some fly species that rasp surfaces when feeding. Although prestomal teeth morphology has been reported for several fly species, their material properties have not been investigated. Here we report the morphology, elemental composition, extent of sclerotization, hardness, and elastic modulus of prestomal teeth and relate these findings to feeding habits. Scanning electron microscopy revealed that species categorized as flower visitors have a large labellum with numerous pseudotracheae and lack prestomal teeth, generalist species have these same features but with prestomal teeth, and specialist species that feed on blood or other insects have a smaller labellum with few or no pseudotracheae and relatively large prestomal teeth. Confocal microscopy revealed that prestomal teeth are heavily sclerotized and the labellum contains resilin, an elastomeric protein. Hardness and elastic modulus were explored with nanoindentation and showed that the insectivorous Scathophaga stercoraria had the hardest prestomal teeth and the highest modulus. Energy dispersive x-ray spectroscopy revealed that prestomal teeth had low concentrations of inorganic elements, suggesting that hardness might be partially supplemented by inorganic elements. Our findings indicate that prestomal teeth morphology and material properties relate more to feeding habits than to phylogeny.

20.
Mar Pollut Bull ; 175: 113364, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35093781

RESUMO

This study aimed to assess the maternal offloading of metals in the Brazilian guitarfishPseudobatos horkelii through determining essential (Cr, Cu, Fe) and non-essential (Cd, Hg, Pb) metal concentrations along two generations of this species: pregnant females and offspring. The maximum transfer capacity (ECER) and offspring/mother ratio were calculated to estimate the extent of offloading, as well as the proportion of contaminants presented in offspring related to the maternal concentrations. Transfer efficiency was element-dependent. Chromium had the highest ECER (99.7%), followed by Hg (67.7%). Other essential metals were less transferred (9.6-35.6%) and Cd and Pb were not detected in uterine content samples. The relationships between maternal length and concentration, as well as transfer capacity were not significant, indicating that females might be continuously exposed, and that offloading might not excrete metals efficiently. On the other hand, embryos are exposed to these elements which could impair embryonic development.


Assuntos
Elasmobrânquios , Mercúrio , Metais Pesados , Animais , Brasil , Cromo , Feminino , Humanos , Exposição Materna , Metais , Metais Pesados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...